Heun functions versus elliptic functions
نویسندگان
چکیده
We present some recent progresses on Heun functions, gathering results from classical analysis up to elliptic functions. We describe Picard’s generalization of Floquet’s theory for differential equations with doubly periodic coefficients and give the detailed forms of the level one Heun functions in terms of Jacobi theta functions. The finite-gap solutions give an interesting alternative integral representation which, at level one, is shown to be equivalent to their elliptic form.
منابع مشابه
Heun equations coming from geometry 1
We give a list of Heun equations which are Picard-Fuchs associated to families of algebraic varieties. Our list is based on the classification of families of elliptic curves with four singular fibers done by Herfurtner. We also show that pullbacks of hypergeometric functions by rational Belyi functions with restricted ramification data give rise to Heun equations.
متن کاملElliptic Integrable Systems Heun Equation and Painlevé Equation
We relate two parameter solutions of the sixth Painlevé equation and finitegap solutions of the Heun equation by considering monodromy on a certain class of Fuchsian differential equations. In the appendix, we present formulae on differentials of elliptic modular functions, and obtain the ellitic form of the sixth Painlevé equation directly.
متن کاملHeun Equation and Inozemtsev Models
The BCN elliptic Inozemtsev model is a quantum integrable systems with N -particles whose potential is given by elliptic functions. Eigenstates and eigenvalues of this model are investigated.
متن کاملHeun Equation and Painlevé Equation
We relate two parameter solutions of the sixth Painlevé equation and finite-gap solutions of the Heun equation by considering monodromy on a certain class of Fuchsian differential equations. In the appendix, we present formulae on differentials of elliptic modular functions, and obtain the ellitic form of the sixth Painlevé equation directly.
متن کاملSome local fixed point results under $C$-class functions with applications to coupled elliptic systems
The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...
متن کامل