Heun functions versus elliptic functions

نویسندگان

  • Galliano Valent
  • Galliano VALENT
چکیده

We present some recent progresses on Heun functions, gathering results from classical analysis up to elliptic functions. We describe Picard’s generalization of Floquet’s theory for differential equations with doubly periodic coefficients and give the detailed forms of the level one Heun functions in terms of Jacobi theta functions. The finite-gap solutions give an interesting alternative integral representation which, at level one, is shown to be equivalent to their elliptic form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heun equations coming from geometry 1

We give a list of Heun equations which are Picard-Fuchs associated to families of algebraic varieties. Our list is based on the classification of families of elliptic curves with four singular fibers done by Herfurtner. We also show that pullbacks of hypergeometric functions by rational Belyi functions with restricted ramification data give rise to Heun equations.

متن کامل

Elliptic Integrable Systems Heun Equation and Painlevé Equation

We relate two parameter solutions of the sixth Painlevé equation and finitegap solutions of the Heun equation by considering monodromy on a certain class of Fuchsian differential equations. In the appendix, we present formulae on differentials of elliptic modular functions, and obtain the ellitic form of the sixth Painlevé equation directly.

متن کامل

Heun Equation and Inozemtsev Models

The BCN elliptic Inozemtsev model is a quantum integrable systems with N -particles whose potential is given by elliptic functions. Eigenstates and eigenvalues of this model are investigated.

متن کامل

Heun Equation and Painlevé Equation

We relate two parameter solutions of the sixth Painlevé equation and finite-gap solutions of the Heun equation by considering monodromy on a certain class of Fuchsian differential equations. In the appendix, we present formulae on differentials of elliptic modular functions, and obtain the ellitic form of the sixth Painlevé equation directly.

متن کامل

Some local fixed point results under $C$-class functions with applications to coupled elliptic systems

The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005